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Abstract

This article studies the effect of discretization order on preconditioning and convergence of a high-order Newton–Kry-
lov unstructured flow solver. The generalized minimal residual (GMRES) algorithm is used for inexactly solving the linear
system arising from implicit time discretization of the governing equations. A first-order Jacobian is used as the precon-
ditioning matrix. The complete lower–upper factorization (LU) and an incomplete lower–upper factorization (ILU(4))
techniques are employed for preconditioning of the resultant linear system. The solver performance and the conditioning
of the preconditioned linear system have been compared in detail for second, third, and fourth-order accuracy. The con-
ditioning and eigenvalue spectrum of the preconditioned system are examined to investigate the quality of preconditioning.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

From the origins of computational fluid dynamics, the long-term goal of the discipline has been the accu-
rate, efficient solution of problems of practical engineering interest. In recent years, techniques for unstruc-
tured meshes have simplified computations for complex real-world geometries, while high-order methods
are emerging as a leading tool for computing accurate solutions. Much work remains, however, both to
improve the robustness and efficiency of these schemes and to promote their wide-spread use.

Our recent work on high-order methods has led us to a reasonably complete understanding of the impor-
tant issues that must be addressed to create a truly high-order finite-volume solver for unstructured meshes.
The best understood part of this problem is reconstruction of the control volume averages to produce a
high-order accurate approximation to the true solution. Numerous researchers, beginning with Barth and
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Frederickson [8], have explored this topic, both from the k-exact least-squares perspective [6,16,36,17,37] and
from the (weighted) essentially non-oscillatory point of view [1,2,20,24]; we choose to follow the k-exact
approach. While accurate reconstruction – by whatever means – is of course the foundation of a high-order
finite-volume method, accurate flux integration, accurate boundary treatment and robust treatment of discon-
tinuities are equally important, and receive little or no treatment in the literature. High-order accurate flux
integration, for instance, requires Gauss quadrature along all control volume interfaces [35]. While ‘‘everyone
knows” that curved boundaries must be used to obtain genuinely high-order solutions, there is essentially no
discussion in the literature on what level of accuracy is required, or how to get it. We have shown [37,33,35]
that the common knowledge is correct: the order of accuracy of the boundary shape must equal the order of
accuracy of the solver. In addition, we have shown that Gauss point locations along the boundary must be
spaced by arc length rather than being projections of Gauss points from a polygonal boundary representation
onto the curved boundary [35]. Finally, treatment of shocks and other solution discontinuities requires par-
ticular attention for high-order schemes, both to eliminate overshoots at discontinuities and to avoid ruining
accuracy in smooth regions of the flow while retaining good convergence properties. Here, we have experi-
mented with two approaches based on Venkatakrishnan’s limiter [44]: a smooth version of the approach of
Delanaye and his co-workers [16,18,17], which reduces to a limited linear reconstruction near discontinuities,
and a variant of our own that limits but does not eliminate all derivatives [27,28]; in this paper, we will use the
former exclusively. We will describe our flow solver in more detail in Section 2.

The result that a high-order scheme gives a more accurate solution on a given mesh than a second-order
scheme is no surprise, as the accuracy analysis guarantees that this will happen asymptotically. The question,
historically, has always been whether a high-order scheme can be made to converge rapidly enough to be com-
petitive with second-order schemes on a computational cost basis. While there are some results that suggest
this is the case for structured meshes [41,21,46,14], the situation for unstructured meshes is less clear, because
little work has been done on optimizing convergence rates for high-order unstructured mesh solvers. The main
contribution of much of our recent research [30,31,29,33] has been to fill this gap by developing an efficient
implicit time advance scheme for our high-order accurate solver. In doing so, we have applied and combined
a number of existing techniques already used with success for other CFD problems, including using GMRES
for linear system solution, ILU(p) preconditioning, and Newton’s method for rapid convergence near steady
state.

The use of GMRES [43] as a linear system solver in CFD is wide-spread. In particular, the matrix-free vari-
ants of GMRES (see [7,10,18] for early usage examples in CFD) are popular, because the matrix appears only
in matrix–vector products, which can be replaced by Frechet derivatives. This approach reduces memory
usage considerably and removes the problem of explicitly forming the high-order Jacobian matrix, greatly sim-
plifying the overall implicit algorithm. However, the Jacobian matrix is typically ill-conditioned, so effective
preconditioning is crucial for good convergence of GMRES and therefore of the outer, non-linear iterations.
Preconditioning consists of two parts: computing a preconditioning matrix and the method used to apply the
preconditioner. A good preconditioning matrix should be an easy-to-compute approximation to the global
flux Jacobian and usually needs to be available explicitly. Common practice for second-order methods is to
use the first-order Jacobian for preconditioning, sacrificing precise linearization in the preconditioner for
cheaper computation [38,39,45,18,34]. For high-order schemes, the cost and complexity of computing the full
high-order Jacobian matrix is even higher than for second order, and so we also choose a simplified first-order
Jacobian for simplicity.

For effective preconditioning, in addition to applying a good preconditioner matrix, we need to employ a
good preconditioning technique [42]. For structured meshes, Pueyo and Zingg [38,39] presented an efficient
matrix-free Newton-GMRES solver for steady-state aerodynamic flow computations. They investigated the
efficiency of different quasi-Newton methods, incomplete lower–upper factorization (ILU) preconditioning
strategies, and reordering techniques for a variety of compressible inviscid, laminar and turbulent flows using
a GMRES iterative solver. They showed that the approximate Newton method using matrix-free GMRES-
ILU(2) with the first-order Jacobian preconditioner and reverse Cuthill–McKee (RCM) reordering produces
the best overall efficiency for most cases. Later Nichols and Zingg [34] developed a 3D multi-block Newton–
Krylov solver for the Euler equations using the same approach and showed that ILU(1) gives the best
performance.
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For unstructured meshes, Venkatakrishnan and Mavriplis [45] developed an approximate Newton-GMRES
implicit solver for computing compressible inviscid and turbulent flows around a multi-element airfoil. They
compared different preconditioning strategies and found that GMRES with ILU preconditioning had the best
performance. In their case the graphs of the linearized Jacobian and the unstructured mesh were the same, as the
Jacobian was approximated based on the direct neighbors, and ILU(0) gave satisfactory performance. Delanaye
et al. [18] presented an ILU preconditioned matrix-free Newton-GMRES solver for the Euler and Navier–
Stokes equations on unstructured adaptive grids using quadratic reconstruction. This study shows that
ILU(0) preconditioning is sometimes insufficient for reaching full convergence of stiff problems when the Jaco-
bian is high-order. By permitting more fill in the ILU decomposition (ILU(1)), full convergence was achieved.
We also have used ILU to apply our preconditioner, and have found that high-order accurate schemes require a
higher fill level for optimal convergence than second-order schemes, as we will discuss below.

This article will focus on the critical issue of how best to compute and apply a preconditioning matrix for a
matrix-free Newton-GMRES scheme for the Euler equations with third- and fourth-order discretizations. We
give an overview of our discretization scheme in Section 2. Our approach for achieving steady-state conver-
gence is laid out in full detail in Section 3, including not only preconditioning-specific issues, but also a dis-
cussion of how we divide computational effort between a start-up phase and a full Newton phase. In
Section 4, we present our numerical results, focusing on analysis of preconditioning and convergence. Both
LU and ILU are employed in the Newton phase to study the effect of factorization accuracy on the quality
of preconditioning and convergence rate. The restarted version of the GMRES algorithm is also used to
explore the possibility of reducing the number of Newton (outer) iterations (especially for the fourth-order
discretization). The conditioning and eigenvalue spectrum of the preconditioned operator are examined for
subsonic and transonic cases. Finally, Section 5 summarizes the paper and presents our conclusions about
how best to precondition a high-order accurate unstructured mesh discretization for the Euler equations.

2. Spatial discretization

Our discretization scheme is a cell-centered finite-volume scheme, using k-exact reconstruction to obtain a
high-order (up to fourth-order) approximation to the solution and Gauss quadrature to integrate fluxes accu-
rately. This section will provide an overview of the scheme; we refer interested readers to [33] for full details.

2.1. Governing equations

The finite-volume formulation of the unsteady 2D Euler equations for an arbitrary control volume can be
written in the form of a volume and a surface integral
d

dt
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where U is the solution vector in conservative variables, and F is the flux vector. The total energy per unit
volume, E, and the pressure, P, are related by the ideal gas equation of state
E ¼ P
c� 1

þ 1

2
q u2 þ v2
� �

ð3Þ
2.2. High-order reconstruction procedure

Finite-volume schemes, by their nature, compute the average value Ui of the solution within each control
volume. As these averages differ by OðhÞ, where h is a characteristic control volume size, flux integrals com-
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puted using the averages directly will be only first-order accurate. To obtain higher accuracy, we compute a k-
exact piecewise polynomial representation U ðkÞR;iðx; yÞ of the solution, as described first by Barth and Frederick-
son [8]. In two dimensions, such a reconstruction polynomial can be written as
U ðkÞR;iðx; yÞ ¼ U i þ
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up to the kth derivatives, where Dx
�! � x!� xi

! and xi
! is the reference point for control volume i, which we take

to be the triangle centroid for cell-centered meshes. The derivatives on the right-hand side are the unknowns
we seek. To ensure conservation of the mean of each variable within each control volume, we require that
1

Ai
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In addition, for accuracy, we require that the reconstruction polynomial U ðkÞR;i in control volume i predict well
the mean value in a stencil of nearby control volumes j:
Uj ¼
1
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As shown in detail elsewhere [37], simplification of this integral leads to
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where the geometric terms are moments of control volume j about the reference point xi
! of control volume i:
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We write Eq. (7) for all control volumes j in the stencil, which, at a minimum, must include as many control
volumes as the number of derivatives we seek in UR;i. In general, this requires ðkþ1Þðkþ2Þ

2
control volumes; that is,

control volume i plus 2, 5, and 9 neighbors for second-, third-, and fourth-order accuracy, respectively. We
choose to use about a 50% excess of control volumes so that resulting least-squares solution can filter out noise
in the discrete solution (3, 9, and 15 neighbors). Stencils are constructed – both in the interior and near
boundaries – by adding layers of face neighbors until the required number of total neighbors is reached;
Fig. 1 illustrates several layers of neighbors. The mean constraint, Eq. (5) can be eliminated analytically,
leaving an unconstrained least-squares problem, which we solve by QR factorization (Golub and Van Loan,
1983 [22]).

2.3. Residual calculation

The high-order accurate least-squares reconstruction scheme of Section 2.2 enables us to compute all the
flow variables in the interior and at the boundaries up to fourth-order accuracy. Fluxes at control volume
boundaries are computed by Roe’s flux differencing [40]
F ðUL;U RÞ ¼
1

2
½F ðULÞ þ F ðURÞ� �

1

2
eA��� ���ðUR � ULÞ ð8Þ



Fig. 1. A typical cell center control volume and its reconstruction stencil, including three layers of neighbors. A second-order
reconstruction would use the first neighbors (FN); for third-order, the second neighbors (SN) would be added; and for fourth-order, the
third neighbors (TN) are also required.
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where UL and UR are computed from the reconstruction polynomials for the left and right control volumes at
the Gauss point. eA is the Jacobian matrix evaluated based on the Roe’s average properties eU ðU R;ULÞ, and jeAj
is written in diagonalized form in practice as
eA��� ��� ¼ eX �1 eK��� ��� eX ; eK��� ��� ¼ Diagðf ðekiÞÞ ð9Þ
where eX are the right eigenvectors and K are the eigenvalues of the Jacobian matrix, and f ðekiÞ incorporates
Harten’s entropy fix [23]. Having computed the fluxes, we use Gauss quadrature to integrate the fluxes to the
same order of accuracy as the reconstruction; this implies the use of two Gauss points for third- and fourth-
order accuracy.

2.4. Monotonicity enforcement

Enforcing monotonicity is an important issue both for the second-order and high-order upwind schemes.
Limiters are often needed to suppress oscillations around discontinuities and to avoid reconstructing a non-
physical solution (such as a negative density) at Gauss points located close to such locations. However, lim-
iters cause two major problems. First, they hamper convergence, as small changes in the solution near a shock
may cause disproportionate changes in limiter behavior. This is especially true for non-differentiable limiters
such as the Barth–Jespersen limiter [9], but even using a differentiable limiter does not guarantee good conver-
gence behavior. Second, limiters change the reconstruction polynomial by reducing the reconstructed solution
derivatives, affecting the accuracy of the reconstructed solution. In particular, if the limiter value differs from 1
by more than OðhkÞ in smooth regions, the solution cannot be kth-order accurate. High-order methods are
particularly sensitive to problems with limiters, especially with regard to accuracy.

We choose to use Venkatakrishnan’s limiter [44]. This limiter is only semi-differentiable (it is not fully dif-
ferentiable when the control volume with the maximum value changes, for instance), but this is enough for
excellent convergence behavior. To address accuracy issues, we apply the limiter selectively: our experience
as well as other research [16,18,17] shows that applying the limiter to all derivatives yields a more diffusive
solution. Therefore, we employ a differentiable switch r to drop the non-linear terms in the reconstruction
when the limiter / differs significantly from one:
U ðkÞG ðxG; yGÞ ¼ Ui þ ð1� rÞ/i þ r½ � Linear partf g þ r Higher-order partf g ð10Þ
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In smooth regions, the full high-order reconstruction is applied by choosing r = 1. Near discontinuities
we choose r � 0 to recover the good behavior of the limited linear reconstruction. Because using a
switch to set r to either zero or one stalls the convergence, we define r as a smooth function of /,
such that r is nearly one for the regions that / P /0 and it quickly goes toward zero for other values
of / [31]
r ¼ 1� tanhðSð/0 � /ÞÞ
2

ð11Þ
S in Eq. (11) determines the sharpness of the transition function, and /0 defines the limiter value that activates
the switch. We have found that choosing /0 = 0.8 and S = 20 provides a reasonable switch function whose
good behavior is relatively case independent.

2.5. Boundary conditions

For a scheme to be fully high-order, boundary condition enforcement must also be high-order. We apply
boundary conditions in two ways: as constraints on the reconstruction or by applying special flux formulae at
boundaries. When applying boundary constraints, we require that the reconstruction polynomial satisfy the
boundary conditions at boundary Gauss points; these constraints, which are written as Taylor series, are addi-
tional constraints on the least-squares problem. When boundary constraints are used, the analytic Euler flux
(Eq. (2)) is then applied at boundary Gauss points. At the far field, we apply characteristic boundary condi-
tions to determine data for computing boundary fluxes, with interior data computed from the high-order accu-
rate reconstruction [33].

3. Convergence to steady state

Assuming the control volumes do not change with time, we can re-write Eq. (1) as a time evolution equa-
tion for the control volume averages:
dU i

dt
¼ � 1

ACV i

I
CSi

F dA � �RiðUÞ ð12Þ
The right-hand side of Eq. (12) is called the flux integral or residual of control volume i, which is a non-linear
function of the solution. We arrive at an implicit time advance formula by applying backward Euler time
differencing:
I
Dt
þ oR

oU

����n
� �

dU i ¼ �Rn
i ðUÞ; dU i ¼ U nþ1

i � Un
i ð13Þ
where oR
oU

is the Jacobian matrix resulting from residual linearization. Eq. (13) is a large linear system of equa-
tions which must be solved at each time step to obtain an update for the vector of unknowns. We use a pre-
conditioned matrix-free GMRES solver for this linear system. Section 3.1 describes some fine points of
implementation of matrix-free GMRES for high-order methods, while the application and assembly of a suit-
able preconditioning matrix are discussed in Sections 3.2 and 3.3, respectively.

If we take an infinite time step, Eq. (13) reduces to Newton iteration
oR
oU

dUi ¼ �Rn
i ðUÞ ð14Þ
Newton’s method generally converges quadratically in the vicinity of the solution. Overall solver robust-
ness depends critically on finding an approximate solution near enough to the steady-state solution that
Newton iteration will succeed, while efficiency considerations dictate that the start-up procedure by
which we compute such an approximate solution be as cheap as possible. Section 3.4 discusses our
start-up process, including criteria for switching to the Newton phase, while Section 3.5 describes our
Newton solver.
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3.1. Linear system solver

We solve the linear systems arising from Eqs. (13) and (14) by using the generalized minimal residual
(GMRES) algorithm [43], which was designed for non-symmetric systems. GMRES minimizes the L2-norm
of the residual of the linear system, implying that if the linearization of the non-linear system is accurate then
GMRES provides the best update for the solution at each iteration. The linear system arising from a high-
order discretization has four to five times as many non-zero entries as a second-order scheme. Because of
the size of these matrices and the difficulty in computing their entries analytically (even for second-order),
we use a matrix-free implementation of GMRES (which to our knowledge was first applied to CFD problems
by Johan et al. [25]) when using a Jacobian for a residual that is more than first-order accurate. In this
approach, matrix–vector products are approximated by a directional derivative formula
oR
oU
� z � RðU þ ezÞ � RðUÞ

e
; e ¼ e0

kzk2

ð15Þ
e0 is a very small number typically equal to the square root of machine precision. However, for fine meshes
where the mesh length scale is very small, we need to use a larger e0 to accurately account for perturbation
of the fourth-order terms due to round-off error considerations. Consequently, we choose e0 = 10�6 instead
of the more common 10�8.

3.2. Preconditioning

Convergence of iterative techniques, including Krylov subspace methods, is highly dependent on the con-
ditioning of the linear system, i.e., the Jacobian matrix. Using a high-order discretization introduces more off-
diagonal entries and increases the bandwidth of the Jacobian matrix considerably. In addition, in the case of
Euler equations (compressible flow), with a non-linear flux function and possible discontinuities in the solu-
tion, the Jacobian matrix is off-diagonally dominant. All these factors lead to poor convergence of the linear
solver, and consequent slowing or stalling of convergence of the non-linear problem. Improving the spectral
properties and eigenvalue clustering of the linear system by preconditioning improves the convergence char-
acteristics of GMRES [11], although GMRES is not as sensitive to the eigenvalue spectrum of the linear sys-
tem as symmetric iterative solvers such as the conjugate gradient (CG) method. We apply right
preconditioning to leave the right-hand side of the linear system intact:
AM�1 ðMxÞ
zffl}|ffl{z

¼ b; x ¼ M�1z ð16Þ

where M is a non-singular matrix which approximates A in the linear system Ax = b. Finding the optimal pre-
conditioner matrix is something of an art, since it is dependent both on the problem and on how the precon-
ditioner is applied. In general, three factors are considered in choosing a preconditioner:

1. M should be a reasonably good approximation to the coefficient matrix A.
2. M should be better conditioned, more narrowly banded, and less expensive to build than A.
3. The system Mx = z should be much easier to solve than Ax = b.

The bottom line is that the cost of constructing and applying the preconditioner should be relatively small
compared to the cost of solving the original linear system.

We solve the linear system Mx = z approximately by factoring M. Complete factorization of the matrix M

into two triangular matrices,
M ¼ LU
where L is a lower triangular matrix, and U is an upper triangular matrix, gives an exact solution of Mx = z,
but these factored matrices are far less sparse than the original matrix M, with concomitant increases in mem-
ory and CPU usage for the factorization. Instead of full factorization, therefore, we apply an incomplete
upper–lower (ILU) factorization, with the non-zero pattern for the factors chosen in advance [42]. The
amount of fill allowed is specified by a fill level p, written as ILU(p). In ILU(0), the factorized matrix and
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the original, non-factored matrix have the same graph or non-zero element locations. Choosing p > 0 allows
some additional fill-in in the factorized matrix improving the accuracy of factorization and the precondition-
ing quality. However, increasing the fill-level comes at the expense of memory usage and extra computing cost,
imposing a restriction in increasing fill-level in practice.

Several researchers have implemented ILU methods for preconditioning of the GMRES linear solver
for compressible fluid flows [45,10,18,12,26]. As discussed in Section 1, their results show that ILU(p) with
some additional fill-in (e.g., p = 1 or 2) is a reliable and robust preconditioning strategy for a variety of
test cases for second-order unstructured mesh schemes, while ILU(0) fails to provide fast convergence in
some cases.

Another variant in the ILU family is ILU(p,s), where in addition to the static non-zero pattern, all fill-
in entries smaller than a tolerance s are set to zero [11]. Since the proper fill-level and tolerance criterion
in ILU(p,s) for efficient preconditioning of the compressible flows are highly dependent on the test case,
we restrict ourselves to using ILU(p) and do not consider ILU(p,s) in this research.

Reordering is another important factor in ILU factorization. Reordering is designed to reduce the
bandwidth of a matrix and consequently the number of fill-in entries that appear during factorization.
Knowing that increasing the fill level in ILU preconditioning has its own disadvantages, reordering the
original preconditioner matrix becomes essential to keep the accuracy of preconditioning for a low fill-
level factorization. Our experience shows that quite often a non-reordered preconditioner matrix with
low fill-level works poorly, while the same fill-level factorization performs perfectly well when the original
matrix is reordered. Like many other researchers, we use the reverse Cuthill–McKee (RCM) [13] reorder-
ing technique.

3.3. Preconditioner matrix

For reasons of memory and computation time, we never explicitly compute the high-order Jacobian; nev-
ertheless, we must still explicitly compute and factor some approximation of the Jacobian for preconditioning,
without which the convergence of GMRES for the linear system is quite poor. The optimal preconditioning
matrix depends both on the problem and on how the preconditioner is applied. Because a low-order Jacobian
matrix captures the essential physical information about the flow (though not all the details), it is a reasonable
choice for preconditioning the linear system arising from the high-order discretization. The first-order Jaco-
bian is narrowly banded after reordering and is much better conditioned than the high-order Jacobian. There-
fore, constructing and applying the preconditioner will require significantly less effort than solving the original
linear system.

We consider two distinct approaches to computing the first-order Jacobian. First, we derive an
approximate analytic Jacobian of the first-order flux integral. Second, we consider a finite-difference
approximation to the first-order flux Jacobian. As we shall see, the former is cheaper to compute,
while the latter is a more effective preconditioner, presumably because it is a more accurate
linearization.

3.3.1. Approximate analytic Jacobian

In this approach to Jacobian calculation, we consider a simplified (first-order) flux integral, and compute its
Jacobian. In the case of the two-dimensional Euler equations discretized over a cell-centered unstructured
mesh, each control volume has three direct neighbors, as shown in Fig. 2. The first-order flux integral or
residual function of the control volume i only depends on these three neighbors and the control volume i
itself:
Ri ¼
X

m¼1;2;3

ðF � n̂dsÞm ¼ F ðU i;UN1
Þ � n̂1l1 þ F ðU i;UN2

Þ � n̂2l2 þ F ðU i;UN3
Þ � n̂3l3 ð17Þ
where bnm and lm are the outward unit normal and the length of face m of control volume i respectively. Next
we take the derivative of the residual Ri with respect to the solution vector U in control volume i and its
neighbors:
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Fig. 2. Schematic of direct neighbors.
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Since both the flux F and solution U are 4-component vectors, each entry in the Jacobian matrix oR
oU is a 4 � 4

matrix. Although the total size of the block matrix is n � n, where n is the total number of control volumes,
there are never more than four non-zero blocks per row, and the resulting Jacobian matrix is very sparse.

The flux differencing term in Eq. (8), jeAjðUN1
� UiÞ, can be recast in the form of jeAjDU and the full deriv-

ative of this term with respect to the solution vector (in general form) is
o eA��� ���DU
	 


oU j
¼

o eA��� ���
oUj

DU

zfflfflfflfflffl}|fflfflfflfflffl{1

þ eA��� ��� oðDUÞ
oUj

zfflfflfflfflfflffl}|fflfflfflfflfflffl{2

ð22Þ
where the index j represents either control volume i or its neighbor.
Differentiation of ojeAj

oU produces third-rank tensors which not only are difficult to derive but also are quite

expensive to compute. Barth [5] has found the full derivative of oðjeAjDUÞ
oU with some clever modifications to elim-

inate the tensor computations, reducing the complexity of the Jacobian computation to some degree. Through
spectral radius analysis for 1-D flow he showed that for a smooth flow the approximate Jacobian is reasonably
accurate up to CFL = 1000 or even above. However, for the shock tube problem the difference between the
true Jacobian and the approximate Jacobian grows after CFL = 10, and becomes noticeable after CFL=100,
showing that the approximate Jacobian will not be accurate enough for larger CFL numbers. This result is
consistent with what we would expect from inspection of Eq. (22). For a smooth flow, DU – the difference

in the two reconstructed solutions at a Gauss point – is on the order of truncation error, so ojeAj
oU DU is very

small compared to jeAj oðDUÞ
oU , and the resulting approximate Jacobian will be acceptable. Near a discontinuity,

however, this approximation is not accurate anymore, because ojeAj
oU and DU will be O(1).
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Even though ignoring changes in eA (treating it as a constant) introduces an error in the Jacobian, it is still
accurate enough to serve as a preconditioning matrix or for the start-up linearization, greatly reducing the
overall Jacobian computation cost for these purposes.This simplification of the Jacobian of Roe’s flux can
be written in the following form for cells i and N1:
oF ðUi;U N1
Þ

oUN1

¼ 1

2

oF ðUN1
Þ

oU N1

� eA��� ���� �
ð23Þ

oF ðUi;U N1
Þ

oU i
¼ 1

2

oF ðUiÞ
oU i

þ eA��� ���� �
ð24Þ
The other Jacobian terms in Eq. (19)–(21) can be derived similarly.
We note that the data used to compute eA and oF

oU would ordinarily be the control volume averages Ui and
U N1

. However, we find that in practice using the reconstructed values in each control volume at the Gauss
point produces a more effective preconditioning matrix; in this paper, we use linear reconstruction data in
computing the Jacobian. Because the reconstruction has already been computed, the additional cost of using
this more accurate data is negligible.

Also, with this approach we include the effects of boundary conditions in the approximate Jacobian by
computing the Jacobian of the boundary flux with respect to the solution in the interior of the domain. In this
case, only the oF

oUi
term in the Jacobian need be computed.

The cost of one approximate analytic Jacobian evaluation is 0.6–0.7 of the cost of a second-order residual
evaluation; reconstruction and limiting costs are not included here, as the limited reconstruction from the
residual evaluation is re-used.

3.3.2. Finite-difference Jacobian

The second approach that we employ to find an approximate Jacobian for preconditioning is finite differ-
encing. The finite-difference Jacobian, though easier to code, is more expensive than the approximate analytic
Jacobian, so we use it only when the need for a more accurate Jacobian justifies it. We compute the finite-dif-
ference Jacobian by perturbing each element of the solution vector U at each Gauss point and recomputing the
flux function; the difference between the perturbed and unperturbed flux functions yields one column of each
of two blocks of the global Jacobian matrix. Again, boundary conditions can be treated implicitly by recom-
puting boundary fluxes with perturbed solution data.

The cost of one Jacobian evaluation is 1.3–1.5 times the computation cost of the same residual evaluation if
the finite-difference Jacobian is employed; again, the reconstruction is re-used from the residual evaluation.

3.4. Start-up phase

Finding a good initial guess or reasonable approximate solution requires understanding of the physics of the
problem; in addition to using analytic approximate solutions where possible, there are various numerical tech-
niques for rapidly computing a good initial solution, including mesh sequencing, multigrid, and mixed expli-
cit/implicit iterations. Our start-up process is based on an implicit defect correction procedure [31], in which
the linearization is based on the inexpensive first-order discretization and the flux calculation remains high-order:
I
Dt
þ oR

oU

����n
1st

� �
DU nþ1 ¼ �RHighðUnÞ ð25Þ
With this approach, high-order Jacobian computation – which is very expensive and not sufficiently accurate
to allow large time steps and solution updates at this early stage – is avoided. Furthermore, the resultant linear
system is easy to solve using (matrix-explicit) GMRES, because the left-hand side is constructed based on the
first-order discretization and can be preconditioned very effectively by an ILU(1) factorization of itself. Since
we are using an approximate linearization, solving the linear system exactly is pointless, and so the linear
system in these defect correction pre-iterations is solved approximately with the tolerance of
5 � 10�2 � kRes(U)k2. Pre-iterations are performed until we reach a good initial state before switching to New-
ton’s method; how good is good enough is problem dependent, and will be discussed further in Section 4.
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3.5. Newton phase

By this point in convergence, most of the transients in the non-linear CFD problem have been removed
from the flow field, and major steady features of the solution have appeared. Consequently, the linearization
of the non-linear residual is accurate enough that the use of Newton iterations is effective in achieving qua-
dratic, or at least super-linear, convergence
oR
oU

����n
High

DU nþ1 ¼ �RHighðU nÞ ð26Þ
For sufficiently accurate linearization, the high-order Jacobian must be applied during the Newton iterations.
As discussed earlier, we use matrix-free GMRES to avoid the necessity of forming the high-order Jacobian
explicitly. Note, however, that the matrix-free Jacobian is not exact because of both truncation error in the
directional derivatives and – especially for high-order – round-off error. These two factors imply that achieving
true quadratic convergence may be impossible in practice. The linear system in Eq. (26) is right preconditioned
by the first-order Jacobian. ILU(p = 2–4) is used for preconditioning; normally for high-order computation
(especially for fourth-order and transonic flow), increasing the fill-level is highly beneficial [32]. A fixed num-
ber of search directions is employed (K = 30); limiting the subspace size is important, since matrix-free
GMRES evaluates the non-linear residual once per search direction, which can become very expensive for
high-order residual computation. The linear system is again solved approximately but this time with a tighter
tolerance (10�2kRes(U)k2), as an accurate update is required. No restart is allowed, and if the tolerance is not
reached, the next outer iteration starts with the best update from the last inner GMRES iteration. Approxi-
mately solving the linear system in this way is called the inexact Newton method [19], and although it typically
increases the number of non-linear outer iterations, considerable computation time is saved overall by not
solving the linear system exactly [39,12,26,31].

4. Results

This section focuses on the effect of variants in preconditioning on convergence of our Newton-GMRES
solver, and on the effect of discretization order on preconditioning quality and convergence rate. We will
examine two test cases in detail: a subsonic case (smooth flow) and a transonic case (flow with discontinuity).

4.1. Subsonic flow over NACA 0012, M = 0.63, a = 2�

The subsonic flow for a NACA 0012 airfoil using an unstructured mesh with 9931 control volumes is com-
puted at M = 0.63, a = 2� for all discretization orders. The far field is located at 25 chords and characteristic
boundary conditions are implemented implicitly. The initial condition is the free stream flow. The tolerance in
solving the linear system is 5 � 10�2 of the L2 norm of the non-linear residual for the start-up phase and
1� 10�2 for the Newton phase. These criteria are often not reached within the allowable number of inner iter-
ations. For all discretization orders, a subspace size of 30 has been set and no restart is allowed for either the
pre-iterations or the inexact Newton iterations. The preconditioning for the pre-iterations is performed by
employing the approximate analytical Jacobian matrix with ILU(1) factorization; for the Newton iterations,
the first-order finite-difference Jacobian matrix is used. The convergence criterion for the steady-state solution
is 1 � 10�12 for the L2 norm of the non-linear residual.

A closeup of the mesh used for this case is shown in Fig. 3. On this mesh, the results for all orders of accu-
racy are indistinguishable from each other to plotting accuracy. The computed lift coefficient for all orders fall
in the range 0.3250 ± 0.0003, while the drag coefficient is 3–4 counts. We have shown elsewhere [33], in a thor-
ough analysis of the accuracy of our scheme for this case, that the computed drag coefficient is a strong func-
tion and lift coefficient a weak function of far field distance; use of an improved far field boundary conditions
would also improve these results, but is beyond our present scope. De Zeeuw and Powell [15] report compa-
rable results, with a lift coefficient of 0.3289 and drag coefficient of 0.0004 for a second-order computation, on
a locally refined Cartesian mesh of 10694 control volumes with a far field distance of 128 chords.
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Our experiments for subsonic flow have shown that a reasonable starting point for Newton iteration can be
easily achieved by a relatively small number of pre-iterations, and there is no need to decrease the residual by a
significant factor. Only a rough physical solution over the airfoil is good enough for starting Newton itera-
tions. The approach described below works well, but could almost certainly be optimized to be simpler and
more efficient.

The solution starts with 30 pre-iterations to reach a good initial solution before switching to Newton iter-
ations. As shown in Table 1, the CFL number starts at 2 and is increased gradually to CFL = 100 for the first
15 pre-iterations which are performed with first-order accurate flux evaluation. The remaining 15 pre-itera-
tions are performed using defect correction with a constant CFL of 100, where the first-order Jacobian is used
both for constructing the Jacobian and for preconditioning the linear system. The residual is evaluated to sec-
ond-order accuracy for all cases. The cost of each pre-iteration includes one first-order Jacobian evaluation
and its incomplete factorization, one flux evaluation, and one linear system solve using GMRES, which is
not matrix-free since the Jacobian matrix is available explicitly.

After start-up, the solution process is switched to Newton iteration and an infinite CFL is employed. For
the Newton phase three different strategies are applied:

1. Inexact Newton iteration with ILU(4) preconditioning.
2. Inexact Newton iteration with LU preconditioning.
3. Exact Newton iteration with ILU(4) preconditioning; up to 10 restarts are allowed for reaching machine

accuracy in the linear solver.

To allow comparison of computing cost between orders of accuracy, we normalize CPU time by a work
unit, defined as the cost of one residual evaluation for the corresponding order of accuracy for a specific mesh.
Table 2 shows the convergence summary for all orders of spatial discretization accuracy in terms of total num-
ber of residual evaluations, total CPU time, total work units, number of Newton iterations, and cost of the
Newton phase in terms of work units. Also, the convergence history in terms of CPU time is shown in
Fig. 4. For all discretization orders, after 30 pre-iterations, the solution has converged after a few Newton iter-
ations. Full convergence is achieved for all orders of accuracy, but the CPU time for the fourth-order case is
Table 1
Variation of CFL number with iteration for subsonic airfoil case

Iteration 1–5 6–10 11–30 Newton

CFL 2 20 100 109



Table 2
Convergence summary for NACA 0012 airfoil, M = 0.63, a = 2�

Order Resid. Eval. Time (s) Work units Newton iterations Newton phase work units

ILU(4)/Inexact Newton

2nd 158 60.4 399.9 4 182.8
3rd 158 72.9 271.3 4 158.7
4th 318 231.8 377.5 9 324.2

LU/Inexact Newton

2nd 105 73.4 476.5 3 260
3rd 149 105.9 386.4 4 264.3
4th 285 269.9 460.5 8 404.0

ILU(4)/Exact Newton

2nd 574 135.7 875.4 3 659.6
3rd 766 258.5 953.8 3 831.2
4th 963 618.1 1060.2 3 1003.6
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Fig. 4. Convergence history, NACA 0012 (9931 CVs), M = 0.63, a = 2�.
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much larger than the other two orders of accuracy. Part of this effect is expected, since the fourth-order dis-
cretization requires more operations due to the rising cost of the reconstruction with increasing discretization
order. However, a considerable part of the computing cost is due to a noticeable increase in the number of
outer iterations. The linear system arising from the fourth-order discretization is more poorly conditioned
than for lower orders, even with preconditioning, making it more difficult to compute an accurate update
to the non-linear problem. On the other hand, both the second- and third-order cases quickly converge, dem-
onstrating the effectiveness of the preconditioning for these cases.

LU factorization provides the best possible application of the preconditioner matrix. As such, it is not sur-
prising that LU improves convergence as measured by non-linear iteration count. However, the difference
from ILU(4) is slight, suggesting that ILU(4) is sufficient to exploit all the information in the preconditioner
matrix considering the fixed subspace size and tolerance in the linear solver. In terms of both CPU time and
memory requirements, ILU(4) is definitely superior to LU.

For the exact Newton case where the linear system in each Newton outer iteration is solved to machine
accuracy using multiple restarts, super-linear convergence is achieved for all discretization orders. However,
due to multiple restarts the total number of non-linear residual evaluations increases dramatically, resulting
in increased solution time.
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Perfect preconditioning would cluster all eigenvalues at one. For the proposed preconditioning strategy, it
is impossible to exactly cluster all eigenvalues at one for two reasons. First, the preconditioning matrix – the
first-order Jacobian – is only an approximation of the true high-order Jacobian. Second, incomplete factoriza-
tion is used as the preconditioning technique instead of full factorization. Therefore, the best that can be
expected is that all eigenvalues of the preconditioned operator will be clustered near unity. As a result, the
distance of the eigenvalues from unity can be used as one of the preconditioning quality indicators. Also, it
is desired to have eigenvalues located far from the origin to avoid ill-conditioning and singularity issues.
To evaluate and compare the quality of the preconditioning for different discretization orders, the approxi-
mate eigenvalue spectrum of the preconditioned linear system is computed as a byproduct of the Arnoldi pro-
cess that builds the Krylov subspace [4]. While the largest eigenvalues are likely to be reasonably accurate, the
smallest eigenvalues are much less reliable. Notwithstanding, all reported eigenvalues are plotted in Fig. 5 at
the last iteration (i.e., the converged solution) for both the LU and ILU(4) factorizations.

The eigenvalues associated with high-order discretizations are scattered with larger distances from one com-
pared to the second-order eigenvalues. This clearly indicates a reduction in the quality of preconditioning with
increasing discretization order, which is consistent with the convergence results. Also, the smallest eigenvalues
approach the origin as the discretization order increases, shifting the matrix toward singularity. The fourth-
order discretization in particular has one eigenvalue very close to the origin. Based on the plotted eigenvalue
patterns, the LU factorization provides better preconditioning compared with the ILU(4) factorization, which
is also consistent with the total number of residual evaluations shown in Table 2.

Condition numbers for the linear systems solved during Newton iterations are also estimated during the
Arnoldi process and are shown in Fig. 6. The condition number is shown as a function of drop in residual.
The kRes0k2, or reference residual, is the L2-norm of the initial non-linear residual computed based on the
far field flow condition. Therefore the ratio of the non-linear residual at the end of each Newton iteration
to kRes0k2, reflects the relative convergence after each Newton iteration. The first iteration condition number
shows the conditioning of the linear system formed based on the solution linearization at the end of the
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start-up phase. The rest of the reported condition numbers are associated with linear systems formed based on
the solution at the end of successive Newton iterations. While the second-order discretization initially has a
larger condition number that the third-order discretization, the condition number decreases gradually with
convergence; note also that the reason the second-order results start at a two order of magnitude residual drop
is that the pre-iterations are more successful in reducing the non-linear residual for this case than the others. In
high-order cases, initially, the condition number is smaller compared to the second-order case but starts to
grow as Newton iteration proceeds.

4.2. Transonic flow over NACA 0012, M = 0.85, a = 1�

For transonic flow, in general, it is more difficult to get fast convergence than for subsonic flow. This is
because of the mixed subsonic/supersonic nature of the flow and the existence of discontinuities in the solu-
tion. The methodology for handling discontinuities can increase the complexity of the problem, especially for
implicit schemes, where the update in each iteration can be large and limiter values can change dramatically
between iterations. In the case of the matrix-free approach, in which matrix–vector multiplication is computed
through flux perturbation, any oscillatory behavior in the limiter could severely degrade the solution conver-
gence. All these factors make efficient solution of transonic flows more difficult.

The transonic flow around a NACA 0012 airfoil at M = 0.85, a = 1.0� is studied; this is the classic AGARD
test case 2 [3]. An unstructured mesh with 5354 control volumes is employed for this test case; the far field
boundary is 25 chords away. The flow is computed for all orders of accuracy using the Venkatakrishnan lim-
iter with proper high-order modification, as described in Section 2.4. The limiter values are allowed to change
through all iterations and no freezing is considered. The tolerance of solving the linear system, like the previ-
ous test case, is 5 � 10�2 of the L2 norm of the non-linear residual for the start-up phase, and 1 � 10�2 for the
Newton phase. For all test cases a subspace size of 30 has been set and no restart is allowed. For fourth-order,
the subspace in the Newton phase has been reduced to 20 to reduce the cost of solving the linear system, but
after reaching a non-linear residual of 1 � 10�9 a subspace of 30 is employed again to improve accuracy in the
linear solver. Preconditioning is performed using the approximate analytical Jacobian matrix with ILU(1) fac-
torization for the start-up pre-iterations and the finite-difference Jacobian matrix with ILU(4) factorization for
the Newton iterations. The initial condition is free stream flow. The global convergence tolerance is an L2

norm of the non-linear density residual of 1 � 10�12.
Fig. 7 shows a close-up of this mesh and of the Mach number distributions on the surface, including both

the upper- and lower-surface shocks. In all cases, agreement with the AGARD data [3] is very good, and over-
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shoots are minimal. Our lift and drag results compare favorably to the AGARD results obtained on a struc-
tured mesh with 40% more control volumes, despite a deliberate lack of adaptive refinement at the shocks on
our part.

For transonic flow, the shock locations in the flow field and their strengths need to be captured relatively
accurately before Newton iterations can decrease the residual of the non-linear problem effectively. For the
second and third-order start-up phases, defect correction pre-iterations continue until the residual of the
non-linear problem drops by a factor of 101.4 compared with the initial residual. As shown in Table 3, for
the second and third-order cases the starting CFL is 2.0, increasing gradually to CFL = 500 after 50 pre-iter-
ations. The CFL number remains constant for the rest of the pre-iterations. For the fourth-order start-up, the
CFL number is not increased above 200 as larger time steps do not help convergence when the linearization is
not accurate. For the fourth-order Newton iterations, limiter oscillations and poor conditioning of the linear
system (even with preconditioning) contribute to an inaccurate solution update and poor overall convergence.
Using a finite CFL = 10,000 instead improves performance for the ‘‘Newton”-GMRES phase for the fourth-
order scheme.

The convergence summary is tabulated in Table 4 and the convergence history is displayed in Fig. 8; exact
Newton results are not given here, because that approach was shown not to be competitive, on a time basis,
for the subsonic case. A constant subspace size without restart leads to poor linear system solution for the
fourth-order linear system for this case. Consequently more outer (Newton) iterations are needed to reduce
the non-linear residual where the fourth-order discretization is employed. For this transonic case, the third-
order solution is about 1.3 times and the fourth-order solution is about 3.2 times more expensive than the sec-
ond-order solution, where ILU(4) is used as a preconditioning technique. Just as with the subsonic case,
Table 3
Variation of CFL number with iteration for the transonic airfoil case

CFL at iteration . . . Total # of pre-iterations

1–10 11–30 31–50 51+ 101+ Newton

2nd/3rd 2 20 100 500 – 106 100
4th 2 10 10 100 200 104 187



Table 4
Convergence summary for NACA 0012 airfoil, M = 0.85, a = 1�

Order Resid. Eval. Time (s) Work units Newton iterations Newton phase work units

ILU(4)/Inexact Newton

2nd 292 103.4 431 6 139
3rd 292 137.7 355 6 144
4th 499 330.8 609 11 273

LU/Inexact Newton

2nd 272 126.8 526 7 230
3rd 292 201.0 500 6 289
4th 509 371.0 665 11 339
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employing full factorization of the first-order Jacobian preconditioner matrix does not help the overall con-
vergence performance.

The estimated condition numbers of the preconditioned linear systems for Newton iterations at all discret-
ization orders are shown in Fig. 9; the condition number becomes larger as we increase the order of accuracy
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showing the rising complexity of the associated linear system. Compared to the subsonic case, the conditioning
of the transonic case is worse because of the existence of discontinuities in the flow field. For third- and fourth-
order accuracy, the preconditioned system has larger condition number when LU is used than when ILU(4) is
used. This shows that for flows with discontinuities the exact factorization, LU, will not help the conditioning
of the preconditioned linear system (i.e. the quality of preconditioning) when the preconditioning matrix is
formed based on the first-order Jacobian. For the third and fourth discretization orders the condition number
of the linear system rises suddenly just before reaching the converged solution. Because this phenomenon is
particularly strong when LU factorization is used, we speculate that it may be caused by trying to extract
too much information about the high-order solution from a low-order Jacobian that simply cannot support
the higher level of detail.

The eigenvalue patterns for all orders of accuracy are shown in Fig. 10 for the preconditioned operator at
the last Newton iteration. The eigenvalues of the preconditioned system are again clustered near one, though
not particularly tightly. The LU preconditioning compared to ILU(4) clusters eigenvalues better for the sec-
ond-order case but loses its effectiveness as the accuracy of the discretization increases. Also eigenvalue scatter
increases for high-order discretizations, illustrating the reduction in quality of preconditioning. Like the sub-
sonic case, the smallest eigenvalues are closer to the origin for high-order discretizations.

5. Conclusion

An ILU preconditioned Newton-GMRES algorithm has been presented for the high-order solution of
inviscid compressible flows. The robustness and fast convergence of the approach have been demonstrated.
We have investigated the effect of the discretization order on preconditioning and convergence of the New-
ton-GMRES solver for subsonic and transonic test cases by examining the conditioning and eigenvalue pat-
terns of the preconditioned system.

Our subsonic results clearly show that the convergence rate of the flow solver depends both on the accuracy
of the linearization of the non-linear problem and on the conditioning of the linear system. The dependence on
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linearization accuracy implies that the use of highly accurate Jacobians is counterproductive when far from the
converged solution because of non-linear effects, but mandatory to attain optimal convergence rate near
steady state. For high-order discretizations, the quality of the preconditioned system is not as good as it is
for the second-order discretization and more outer or Newton iterations are needed for full convergence, espe-
cially for fourth-order discretization. The quality of the preconditioning – as measured by condition number
and eigenvalue spectra – can be improved by using LU factorization instead of ILU for smooth flows. Fur-
thermore, the number of Newton iterations can be reduced dramatically if the exact Newton approach is used.
However, the overall solver efficiency is still best with ILU(4) and an inexact Newton approach.

For a transonic case, we found similar trends. Again, both accuracy of the linearization and conditioning of
the linear system are important for convergence. In this case, the start-up procedure must provide a solution
with shock strengths and locations reasonably accurately known before Newton iteration is effective. Degra-
dation of convergence rate with increasing order of accuracy, as measured by both iteration count and CPU
time, is more severe for the transonic problem. Also, we found that the quality of the preconditioning by exact
(LU) factorization can be degraded compared to ILU(4) for a high-order transonic flow. More effective pre-
conditioning of transonic cases will require careful study within the context of the discontinuity handling
methodology.

The number of Newton iterations for ILU(4) and LU for all cases were almost the same, showing the
approximate equivalence of the performance of these two preconditioning techniques given the pre-set toler-
ance and the first-order preconditioner matrix. Choices made about preconditioning are critical for efficient
convergence for high-order schemes. Incomplete factorization as a preconditioning method and a low-order
Jacobian as a preconditioner matrix provide a satisfactory convergence rate for all discretization orders. How-
ever, the fourth-order discretization convergence is considerably slower than the other two accuracy orders
using the current matrix-free approach.
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